Financial Management 7th 김용석 CPA/CFA

Task-Based Simulation Solutions

2020

Chapter 2. Time value of money

[Problem 1]

(Instruction 1)
$\$ 25,000=$ PMT x $2.48685 \rightarrow$ PMT $=\$ 10,053$

Time	Beginning	Payment	Interest	Principal	Ending
1	25,000	10,053	2,500	7,553	17,447
2	17,447	10,053	1,745	8,308	9,139
3	9,139	10,053	914	9,139	0
Total		30,159	5,159	25,000	

(Instruction 2)

Time	Payment	Interest	Principal
1	10,053	$2,500(24.9 \%)$	$7,553(75.1 \%)$
2	10,053	$1,745(17.4 \%)$	$8,308(82.6 \%)$
3	10,053	$914(9.1 \%)$	$9,139(90.9 \%)$

[Problem 2]

(1) 현재 $\$ 40,000$ 의 10 년 후 미래가치
[EXCEL] 함수선택 FV
Rate $=5 \%$, Nper $=10, \mathrm{PV}=40,000 \rightarrow \mathrm{FV}=-65,156$
(2) 25 회 선불연금의 10 년 후 현재가치
[EXCEL] 함수선택 PV
Rate $=8 \%$, Nper $=25$, PMT $=65,156$, Type $=1 \rightarrow \mathrm{PV}=-751,168$
(3) 10 회 정상연금의 연금
[EXCEL] 함수선택 PMT
Rate $=8 \%$, Nper $=10, \mathrm{PV}=-100,000, \mathrm{FV}=751,168 \rightarrow \mathrm{PMT}=-36,950$
\therefore Annual savings $=\$ 36,950$

[Problem 3]

(1) 현재 $\$ 15,000$ 의 5 년 후 미래가치
[EXCEL] 함수선택 FV
Rate $=5 \%$, Nper $=5, \mathrm{PV}=15,000 \rightarrow \mathrm{FV}=-19,144$
(2) 4 회 선불연금의 5 년 후 현재가치
[EXCEL] 함수선택 PV
Rate $=6 \%$, Nper $=4$, PMT $=19,144$, Type $=1 \rightarrow \mathrm{PV}=-70,316$
(3) 5회 정상연금의 연금
[EXCEL] 함수선택 PMT
Rate $=6 \%$, Nper $=5, \mathrm{PV}=-7,500, \mathrm{FV}=70,316 \rightarrow \mathrm{PMT}=-14,254$
\therefore Annual savings $=\$ 14,254$

[Problem 4]

5 년 후의 채권의 가격
[EXCEL] 함수선택 PV
Rate $=8.5 \%$, Nper $=15, \mathrm{PMT}=90, \mathrm{FV}=-1,000 \rightarrow \mathrm{PV}=-1,042$

현재시점의 채권의 가격
[EXCEL] 함수선택 PV
Rate $=10 \%$, Nper $=5, \mathrm{PMT}=90, \mathrm{FV}=-1,042 \rightarrow \mathrm{PV}=-988$
\therefore 현재 채권X의 가치 $=\$ 988$

[Problem 5]

(Instruction 1)
[EXCEL] 함수선택 Nper
Rate $=1 \%$, PMT $=10, \mathrm{PV}=-350 \rightarrow$ Nper $=43.29 \rightarrow \mathrm{~N}=43$ months
(Instruction 2)
[EXCEL] 함수선택 Nper
Rate $=1 \%, \mathrm{PMT}=30, \mathrm{PV}=-350 \rightarrow \mathrm{Nper}=12.47 \rightarrow \mathrm{~N}=12$ months
(Instruction 3)
$(43 \times \$ 10)-(12 \times \$ 30)=\$ 70$

Chapter 3. FS analysis

[Problem 1]

(1) Account payable $=\$ 300,000 \times 50 \%-60,000=\$ 90,000$
(2) Common stock $=\$ 300,000 \times 50 \%-97,500=\$ 52,500$
(3) Sales $=\$ 300,000 \times 1.5=\$ 450,000$
(4) COGS $=\$ 450,000 \times(1-25 \%)=\$ 337,500$
(5) Inventory $=\$ 337,500 \div 1.5=\$ 67,500$
(6) Account receivable $=36.5$ days $x \$ 450,000 \div 365=\$ 45,000$
(7) Fixed assets $=\$ 300,000-(\$ 90,000 \times 1.8)=\$ 138,000$
(8) Cash $=\$ 90,000 \times 1.8-(45,000+67,500)=\$ 49,500$

[Problem 2]

(Instruction 1)
(1) Current ratio $=\$ 655,000 \div \$ 330,000=1.98$
(2) Quick ratio $=(655,000-241,500) \div 330,000=1.25$
(3) Days sales outstanding $=365 \times 336,000 \div 1,607,500=76.29$ days
(4) Inventory turnover $=1,392,500 \div 241,500=5.77$
(5) Asset turnover $=1,607,500 \div 947,500=1.70$
(6) Net profit margin $=27,300 \div 1,607,500=1.70 \%$
(7) $\mathrm{ROA}=27,300 \div 947,500=2.88 \%$
(8) $\mathrm{ROE}=27,300 \div 361,000=7.56 \%$
(9) debt-to-assets $=(947,500-361,000) \div 947,500=61.90 \%$
(Instruction 2)
Equity multiplier $=$ Financial leverage $=947,500 \div 361,000=2.62$
Du Pont ROE $=1.70 \% \times 1.70 \times 2.62=7.57 \%$ (단수차이)

[Problem 3]

(1) Sales $=3,000 \times 1.1=\$ 3,300$ million
(2) Operating costs, excluding depreciation $=3,300 \times 0.8=2,640$
(3) EBITDA $=(1)-(2)=660$
(4) Depreciation expense $=250 \times 1.1=275$
(5) $\mathrm{EBIT}=(3)-(4)=385$
(6) Interest expense $=125$
(7) $\mathrm{EBT}=(5)-(6)=260$
(8) Tax expense $=260 \times 0.4=104 \quad$ (9) Net income $=(7)-(8)=\$ 56$ million

Chapter 4. Interest rate and risk

[Problem 1]

real risk-free rate $=5.5 \%-3.25 \%=\underline{2.25 \%}$
(참고) Yield-to-maturity $=5.5 \%+0.6 \%+1.8 \%+2.15 \%=10.05 \%$

[Problem 2]

Default risk premium $=8 \%-6 \%-0.5 \%=\underline{1.50 \%}$

[Problem 3]

Maturity risk premium $=6.2 \%-3 \%-3 \%=\underline{0.20 \%}$

[Problem 4]

Expected return $=0.1 \times-50 \%+0.2 \times-5 \%+0.4 \times 16 \%+0.2 \times 25 \%+0.1 \times 60 \%=\underline{11.40 \%}$ Standard deviation $=$
$\sqrt{0.1 \times(-50-11.4)^{2}+0.2 \times(-5-11.4)^{2}+0.4 \times(16-11.4)^{2}+0.2 \times(25-11.4)^{2}+0.1 \times(60-11.4)^{2}}=\underline{26.68 \%}$
Coefficient of variation $=\frac{26.68 \%}{11.4 \%}=2.34$

[Problem 5]

Beta of fund $=(0.1 \times 1.50)+(0.15 \times-0.50)+(0.25 \times 1.25)+(0.5 \times 0.75)=0.76$
Expected return $=6+(14-6) \times 0.76=\underline{12 \%}$

[Problem 6]

$P_{0}=\frac{\$ 5 \times(1-0.05)}{0.15-(-0.05)}=\$ 23.75$

[Problem 7]

$P_{4}=\frac{D_{5}}{k_{e}-g}=\frac{\$ 0.50 \times(1+0.07)^{4}}{0.12-0.07}=\underline{\$ 13.11}$

[Problem 8]

<수정전>
$P_{3}=\frac{D_{4}}{k_{e}-g}=\frac{\$ 1 \times 1.50^{2} \times 1.08}{0.15-0.08}=\$ 34.714 \quad P_{0}=\frac{1}{1.15^{3}}+\frac{1 \times 1.50^{1}}{1.15^{4}}+\frac{1 \times 1.50^{2}+P_{3}}{1.15^{5}}=\$ 19.89$
<수정후>
$P_{3}=\frac{D_{4}}{k_{e}-g}=\frac{\$ 1 \times 1.50^{2} \times 1.08}{0.15-0.08}=\$ 34.714 \quad P_{0}=\frac{1}{1.15^{1}}+\frac{1 \times 1.50^{1}}{1.15^{2}}+\frac{1 \times 1.50^{2}+P_{3}}{1.15^{3}}=\$ 26.31$

[Problem 9]

Expected return of fund $\mathrm{P}=(0.5 \times 9)+(0.5 \times 10.75)=9.88 \%$
Expected return of fund $\mathrm{Q}=(1 / 3 \times 9)+(1 / 3 \times 10.75)+(1 / 3 \times 12.50)=10.75 \%$ 10.75-9.88 $=\underline{0.88 \%}$

[Problem 10]

$13=4.5+5.5 \mathrm{x}$ beta $\mathrm{m}+\mathrm{beta}=1.55$
$1.55=(0.8 \times 1.5)+(0.2 \times$ beta $) \mathrm{m}+$ beta $=\underline{1.75}$

[Problem 11]

(Instruction 1)
$\operatorname{CV}(\mathrm{X})=35 / 10=\underline{3.50} \quad \operatorname{CV}(\mathrm{Y})=25 / 12.5=\underline{2.00}$
(Instruction 2)
Stock Y
(Instruction 3)
Required return $(X)=6+5 \times 0.9=\underline{10.5 \%}$
Required return $(\mathrm{Y})=6+5 \times 1.2=\underline{12 \%}$
(Instruction 4)
Stock Y
(Instruction 5)
Required return (portfolio) $=10.5 \times 0.75+12 \times 0.25=\underline{10.875 \%}$
(Instruction 6)
Stock Y

Chapter 5. Capital Structure

[Problem 1]

$k_{e}=\frac{\$ 2 \times 1.07}{\$ 22.5}+0.07=0.1651$ N. 16.51%
$\mathrm{WACC}=12 \% \times 0.6 \times 0.4+16.51 \% \times 0.6=\underline{12.79 \%}$

[Problem 2]

$k_{e}=\frac{\$ 2 \times 1.07}{\$ 24.75}+0.07=0.1565$
$13.95 \%=11 \% \times 0.65 \times \mathrm{w}+15.65 \% \times(1-\mathrm{w}) \rightarrow \mathrm{w}=\underline{20 \%}$

[Problem 3]

(1) Under the old production process

EBIT $=\$ 28.80 \times 450,000$ units $-10,200,000-1,560,000=\$ 1,200,000$
EPS $=\frac{(1,200,000-4,800,000 \times 8 \%) \times(1-0.4)}{240,000}=\$ 2.04$
(2) Under the new process if it uses debt

EBIT $=\$ 28.80 \times 450,000$ units $-10,200,000 \times 0.8-1,800,000=\$ 3,000,000$
EPS $=\frac{(3,000,000-4,800,000 \times 8 \%-7,200,000 \times 10 \%) \times(1-0.4)}{240,000}=\underline{\$ 4.74}$
(2) Under the new process if it uses common stock

EBIT $=\$ 28.80 \times 450,000$ units $-10,200,000 \times 0.8-1,800,000=\$ 3,000,000$
EPS $=\frac{(3,000,000-4,800,000 \times 8 \%) \times(1-0.4)}{240,000+240,000}=\$ 3.27$

[Problem 4]

(Instruction 1)
$k_{p s}=\frac{5}{49}=10.20 \% \quad k_{e}=\frac{3.50}{36}+0.06=15.72 \%$
$W A C C=(10 \times 0.7 \times 0.15)+(10.20 \times 0.10)+(15.72 \times 0.75)=13.86 \%$
(Instruction 2)
Project 1, Project 2

[Problem 5]

(Instruction 1)

	KIM	Jordan
Debt	400,000	200,000
Equity	200,000	200,000
Asset	600,000	400,000
debt ratio	66.67%	50%

(Instruction 2)

	Jordan
Debt	400,000
Equity	200,000
Asset	600,000
debt ratio	66.67%

(Instruction 3)
ROA and ROE will be higher under Jordan as compared to KIM.

[Problem 6]

Bond A
[EXCEL] 함수선택 PV
만기 4년 : Rate $=9.6 \%$, Nper=4, PMT=100, $\mathrm{FV}=1,000 \rightarrow \mathrm{PV}=-1,013$
만기 3년 : Rate $=9.6 \%$, Nper $=3, \mathrm{PMT}=100, \mathrm{FV}=1,000 \rightarrow \mathrm{PV}=-1,010$
만기 2년 : Rate $=9.6 \%$, Nper $=2, \mathrm{PMT}=100, \mathrm{FV}=1,000 \rightarrow \mathrm{PV}=-1,007$
만기 1년 : Rate $=9.6 \%$, Nper $=1$, PMT $=100, \mathrm{FV}=1,000 \rightarrow \mathrm{PV}=-1,004$
만기 0년 : Rate $=9.6 \%$, Nper $=0, \mathrm{PMT}=100, \mathrm{FV}=1,000 \rightarrow \mathrm{PV}=-1,000$
Bond B
[EXCEL] 함수선택 PV
만기 4년 : Rate $=9.6 \%$, Nper=4, PMT $=0, \mathrm{FV}=1,000 \rightarrow \mathrm{PV}=-693$
만기 3년 : Rate $=9.6 \%$, Nper $=3, \mathrm{PMT}=0, \mathrm{FV}=1,000 \rightarrow \mathrm{PV}=-760$
만기 2년 : Rate $=9.6 \%$, Nper=2, $\mathrm{PMT}=0, \mathrm{FV}=1,000 \rightarrow \mathrm{PV}=-832$
만기 1년 : Rate $=9.6 \%$, Nper $=1, \mathrm{PMT}=0, \mathrm{FV}=1,000 \rightarrow \mathrm{PV}=-912$
만기 0년 : Rate $=9.6 \%$, Nper $=0$, PMT $=0, \mathrm{FV}=1,000 \rightarrow \mathrm{PV}=-1,000$

[Problem 7]

(Instruction 1)
HL
Debt $=20,000,000 \times 0.5=10,000,000$ menty $=10,000,000$
Interest $=10,000,000 \times 12 \%=1,200,000 \mathrm{NI}=(4,000,000-1,200,000) \times 0.6=1,680,000$
ROE $=1,680,000 / 10,000,000=\mathbf{1 6 . 8 \%}$
LL
Debt $=20,000,000 \times 0.3=6,000,000$ Nut Equity $=14,000,000$
Interest $=6,000,000 \times 10 \%=600,000 \mathrm{NI}=(4,000,000-600,000) \times 0.6=2,040,000$
ROE $=2,040,000 / 14,000,000=\mathbf{1 4 . 6 \%}$
(Instruction 2)
Debt $=20,000,000 \times 0.6=12,000,000$ 쁘 \quad Equity $=8,000,000$
Interest $=12,000,000 \times 15 \%=1,800,000 \cdots \mathrm{NI}=(4,000,000-1,800,000) \times 0.6=1,320,000$
ROE $=1,320,000 / 8,000,000=\mathbf{1 6 . 5 \%}$

[Problem 8]

(Instruction 1)
Interest $=2,000,000 \times 10 \%=200,000 \mathrm{NI}=(4,000,000-200,000) \times 0.65=2,470,000$
$\mathrm{EPS}=2,470,000 / 600,000=\$ 4.117$
$P_{o}=\frac{D}{k_{e}}=\frac{4.117}{0.15}=\$ 27.447$
(Instruction 2)
MV of equity $=27.447 \times 600,000=\$ 16,468,200$
MV of debt $=\$ 2,000,000$ mV of firm value $=\$ 18,468,200$
Weight of equity $=16,468,200 / 18,468,200=0.89$ Weight of debt $=0.11$
$W A C C=10 \% \times(1-0.35) \times 0.11+15 \% \times 0.89=\mathbf{1 4 . 1} \%$
(Instruction 3)
$\mathrm{NI}=(4,00,000-10,000,000 \times 12 \%) \times 0.65=\$ 1,820,000$
repurchased shares $=8,000,000 / 27.447=327,239$
outstanding shares $=600,000-327,239=272,761$
$\mathrm{EPS}=1,820,000 / 272,761=6.67$
stock price $=6.67 / 0.17=39.24$
MV of equity $=39.24 \times 272,761=10,703,142$
MV of debt $=10,000,000$
MV of firm value $=20,703,142$ wn $\mathrm{wd}=0.483$, we $=0.517$
$\mathrm{WACC}=12 \% \times 0.65 \times 0.483+17 \% \times 0.517=12.56 \%$ m" change

```
(Instruction 4)
skip
(Instruction 5)
TIE(original) = 4,000,000/200,000 = 20
Interest = 10,000,000 x 12% = 1,200,000 mut TIE(new) = 4,000,000/1,200,000 = 3.3
```


[Problem 9]

(Instruction 1)
EBIT after change $=(\$ 95-\$ 40) \times 7,000-200,000-50,000=\$ 135,000$
ROA before change $=\$ 50,000 / \$ 500,000=10 \%$
ROA after change $=\$ 135,000 / \$ 900,000=15 \%$ change
(Instruction 2)
BEP before change $=\$ 200,000 / \$ 50=4,000$ units
BEP after change $=\$ 250,000 / \$ 55=4,545$ units "u* increase
(Instruction 3)
Interest $=400,000 \times 0.1=\$ 40,000$ NI $=135,000-40,000=\$ 95,000$
Sales revenue $=95 \times 7,000=\$ 665,000$
profit margin $=95,000 / 665,000=14.3 \%$
Asset turnover $=665,000 / 900,000=0.739$
ROA $=14.3 \% \times 0.739=10.6 \%$ change

[Problem 10]

1. True
2. True
3. True
4. False
5. True
6. False
[Problem 11]
$\frac{0.75}{1.09} \times 5=\mathbf{\$ 3 . 4 4}$

[Problem 12]

P / E before repurchase $=\$ 32 / 2=16$
EPS after repurchase $=\$ 2,000,000 / 800,000=\$ 2.50$
Stock price after repurchase $=\$ 2.50 \times 16=\$ 40$

Chapter 6. Capital Budgeting

[Problem 1]

$N P V_{X}=-100,000+\frac{30,000}{1 \cdot 12^{1}}+\frac{50,000}{1 \cdot 12^{2}}+\frac{70,000}{1 \cdot 12^{3}}=16,470$
$N P V_{Y}=-70,000+\frac{30,000}{1 \cdot 12^{1}}+\frac{30,000}{1 \cdot 12^{2}}+\frac{30,000}{1 \cdot 12^{3}}+\frac{30,000}{1 \cdot 12^{4}}+\frac{10,000}{1 \cdot 12^{5}}=26,795$
Rate $=12 \%$, Nper $=3, \mathrm{PV}=-16,470 \rightarrow \mathrm{PMT}=+6,837=\mathrm{EAA}(\mathrm{X})$
Rate $=12 \%$, Nper $=5, \mathrm{PV}=-26,795 \rightarrow \mathrm{PMT}=+7,433=\mathrm{EAA}(\mathrm{Y})$

[Problem 2]

(Instruction 1)

	$\mathrm{t}=1$	2	3	4
SL	200,000	200,000	200,000	200,000
MACRS	264,000	360,000	120,000	56,000

(Instruction 2)
$P V_{S L}=\frac{200,000 \times 0.4}{1.10^{1}}+\frac{200,000 \times 0.4}{1.10^{2}}+\frac{200,000 \times 0.4}{1.10^{3}}+\frac{200,000 \times 0.4}{1.10^{4}}=\$ 253,589$
$P V_{M A C R S}=\frac{264,000 \times 0.4}{1.10^{1}}+\frac{360,000 \times 0.4}{1.10^{2}}+\frac{120,000 \times 0.4}{1.10^{3}}+\frac{56,000 \times 0.4}{1.10^{4}}=\$ 266,371$
$266,371-253,589=\underline{\$ 12,782}$
MACRS method would produce the higher NPV.

[Problem 3]

(Instruction 1)
$N P V_{X}=-6,000+\sum_{t=1}^{5} \frac{2,000}{1.14^{t}}=+866 \quad N P V_{Y}=-18,000+\sum_{t=1}^{5} \frac{5,600}{1.14^{t}}=+1,225$
$6,000=\sum_{t=1}^{5} \frac{2,000}{\left(1+I R R_{X}\right)^{t}} \rightarrow I R R_{X}=20 \% \quad 18,000=\sum_{t=1}^{5} \frac{5,600}{\left(1+I R R_{Y}\right)^{t}} \rightarrow I R R_{Y}=17 \%$
$6,000=\frac{2,000 \times 6.61010}{\left(1+M I R R_{X}\right)^{5}} \rightarrow M I R R_{X}=17 \% \quad 18,000=\frac{5,600 \times 6.61010}{\left(1+M I R R_{Y}\right)^{5}} \rightarrow M I R R_{Y}=16 \%$
Payback $_{X}=\frac{6,000}{2,000}=3$ years $\quad \operatorname{Payback}_{Y}=\frac{18,000}{5,600}=3.21$ years
(Instruction 2) Both Project X and Project Y
(Instruction 3) Project Y
(Instruction 4) Different in size

```
(Instruction 5)
\(\mathrm{k}=0\) N. \(\operatorname{NPV}(\mathrm{X})=-6,000+2,000 \times 5=4,000\)
                            \(\mathrm{NPV}(\mathrm{Y})=-18,000+5,600 \times 5=10,000\)
\(\mathrm{k}=\infty\) N. \(\operatorname{NPV}(\mathrm{X})=-6,000+2,000 \times 0=-6,000\)
                        \(\mathrm{NPV}(\mathrm{Y})=-18,000+5,600 \times 0=-18,000\)
cross-over rate
\(\mathrm{NPV}(\mathrm{X})=\mathrm{NPV}(\mathrm{Y})\)
\(-6,000+2,000 \times \operatorname{PVIFA}(\mathrm{R}, 5)=-18,000+5,600 \times \operatorname{PVIFA}(\mathrm{R}, 5)\)
\(\operatorname{PVIFA}(\mathrm{R}, 5)=3.333\)
Rate : \(\mathrm{N}=5, \mathrm{PMT}=, \mathrm{PV}=-3.33\) nate \(=15.24 \%\)
(Instruction 6)
```

```
0 < k < 15.24% : Project Y
```

0 < k < 15.24% : Project Y
15.24% < k < 20% : Project X
15.24% < k < 20% : Project X
k=15.24% : indifferent

```
k=15.24% : indifferent
```


[Problem 4]

(Instruction 1) NOPAT $=4,000,000 \times(1-0.4)=\underline{2,400,000}$ thousands of dollars
(Instruction 2) $\mathrm{OCF}=2,4000,000+3,000,000=5,400,000$ thousands of dollars
(Instruction 3) $\mathrm{FCF}=5,400,000-1,300,000=\underline{4,100,000}$ thousands of dollars

[Problem 5]

(S - S x $0.55-800,000 \times 1.10-600,000 \times 1.10) \times(1-0.4)=\$ 2,500,000$
$S=\$ 12,681,481$

[Problem 6]

(Instruction 1) Year 0 cash outflow $=120,500+5,500=\underline{126,000}$
(Instruction 2)
Year 1 OCF $=44,000 \times 0.65+120,500 \times 0.33 \times 0.35=\underline{42,518}$
Year $2 \mathrm{OCF}=44,000 \times 0.65+120,500 \times 0.45 \times 0.35=\underline{47,579}$
Year 3 OCF $=44,000 \times 0.65+120,500 \times 0.15 \times 0.35=\underline{34,926}$
(Instruction 3)
Year $3 \mathrm{TCF}=65,000-(65,000-120,500 \times 0.07) \times 0.35+5,500=\underline{50,702}$
(Instruction 4)
$N P V=-126,000+\frac{42,518}{1 \cdot 12^{1}}+\frac{47,579}{1 \cdot 12^{2}}+\frac{85,628}{1 \cdot 12^{3}}=+10,841>0$ wnt The machine should be purchased

[Problem 7]

Year 0 cash outflow $=1,500,000+400,000=1,900,000$
EBITDA $=(80-65) \times 100,000-500,000=1,000,000$
Year 1, 2, 3 OCF $=1,000,000 \times 0.6+500,000 \times 0.4=800,000$
Year 4, $5 \quad \mathrm{OCF}=1,000,000 \times 0.6+0 \times 0.4=600,000$
Year $5 \mathrm{TCF}=200,000 \times 0.6+400,000=520,000$
$N P V=-1,900,000+\frac{800,000}{1 \cdot 12^{1}}+\frac{800,000}{1 \cdot 12^{2}}+\frac{800,000}{1 \cdot 12^{3}}+\frac{600,000}{1 \cdot 12^{4}}+\frac{1,120,000}{1 \cdot 12^{5}}=+1,038,294$

[Problem 8]

Existing equipment : 내용연수 5년, 정 액법 가정
Year 0 FCF $=-275,000+80,000-(80,000-100,000) \times 0.4-15,000=-202,000$
Year 1 OCF $=75,000 \times 0.6+(275,000 \times 0.2-20,000) \times 0.4=59,000$
Year $2 \mathrm{OCF}=75,000 \times 0.6+(275,000 \times 0.32-20,000) \times 0.4=72,200$
Year $3 \mathrm{OCF}=75,000 \times 0.6+(275,000 \times 0.192-20,000) \times 0.4=58,120$
Year $4 \mathrm{OCF}=75,000 \times 0.6+(275,000 \times 0.1152-20,000) \times 0.4=49,672$
Year $5 \mathrm{OCF}=75,000 \times 0.6+(275,000 \times 0.1152-20,000) \times 0.4=49,672$
Year 5 TCF $=275,000 \times 0.0576 \times 0.4+15,000=21,336$
$\mathrm{NPV}=+45,504$

[Problem 9]

(Instruction 1)
Year 0 cash flow $=-250,000-25,000=-275,000$
Year $1 \mathrm{OCF}=90,000 \times 0.6+250,000 \times 0.33 \times 0.4=87,000$
Year $2 \mathrm{OCF}=90,000 \times 0.6+250,000 \times 0.45 \times 0.4=99,000$
Year $30 C F=90,000 \times 0.6+250,000 \times 0.15 \times 0.4=69,000$
Year 4 OCF $=90,000 \times 0.6+250,000 \times 0.07 \times 0.4=61,000$
Year $5 \mathrm{OCF}=90,000 \times 0.6+250,000 \times 0 \times 0.4=54,000$
Year $5 \mathrm{TCF}=23,000 \times 0.6+25,000=38,800$
$\mathrm{NPV}=+37,035, \mathrm{IRR}=15 \%$, MIRR $=13 \%$, Payback $=3.33$ years
(Instruction 2)
Plus 20\%

```
\triangleEBITDA = 90,000 x 0.2 = 18,000
\triangleOCF = 18,000 x 0.6 = 10,800
\triangleNPV = 10,800 x PVIFA(10%,5) = 40,940
NPV(after) = 37,035 + 40,940 = 77,975
```

Minus 20\%

```
NPV(after) = 37,035-40,940 = (-)3,905
```


[Problem 10]

(Instruction 1)
Year 0 cash flow $=-65,000-2,000=-67,000$
EBITDA $=4,000 \times 50 \times 0.3-30,000=30,000$
Year $1 \mathrm{OCF}=30,000 \times 0.6+65,000 \times 0.33 \times 0.4=26,580$
Year $2 \mathrm{OCF}=30,000 \times 0.6+65,000 \times 0.45 \times 0.4=29,700$
Year 3 OCF $=30,000 \times 0.6+65,000 \times 0.15 \times 0.4=21,900$
Year $3 \mathrm{TCF}=10,000-(10,000-65,000 \times 0.07) \times 0.4+2,000=9,820$
$\mathrm{NPV}=+4,245$
(Instruction 2)
$\triangle \mathrm{OCF}=-4,000 \times 0.2 \times 50 \times 0.3 \times 0.6=-7,200$
$\Delta \mathrm{NPV}=-17,595 \mathrm{~m} \mathrm{mPV}=4,245-17,595=-\underline{13,350}$
(Instruction 3)
Base-case NPV $=+4,245$
Worst-case
$\triangle \mathrm{OCF}=(3,200 \times 50 \times 0.25-4,000 \times 50 \times 0.3) \times 0.6=-12,000$
Δ NPV $=-29,325$ n't Worst-case NPV $=4,245-29,325=-25,080$
Best-case
$\triangle \mathrm{OCF}=(4,800 \times 50 \times 0.35-4,000 \times 50 \times 0.3) \times 0.6=+14,400$
$\triangle \mathrm{NPV}=+35,189$ mest Best-case NPV $=4,245+35189=+39,434$
Expected NPV $=(4,245 \times 0.50)+(-25,080 \times 0.25)+(39,434 \times 0.25)=+5,711$
[Problem 11]
(1) Expected NPV
$=(-70 \times 0.05)+(-25 \times 0.2)+(12 \times 0.5)+(20 \times 0.2)+(30 \times 0.05)=+3$
(2) Variance
$=(-70-3) 2 \times 0.05+(-25-3) 2 \times 0.2+(12-3) 2 \times 0.5+(20-3) 2 \times 0.2+(30-3) 2 \times 0.05=558$
" m Standard deviation $=(558) 0.5=23.6$
(3) $\mathrm{CV}(\mathrm{NPV})=23.6 / 3=7.87$

[Problem 12]

TCF $=10,000-(10,000-75,000) \times 0.4=+36,000$

Chapter 7. Derivatives

[Problem 1]

(Instruction 1)
Put option premium $=\underline{3.06}$
Call option premium $=9.29$
(Instruction 2)
Return of a share of stock $=\$ 70-60=\underline{+10}$
Return of a call option $=$ Max[70-55, 0] - $9.29=+5.71$
Return of a put option $=$ Max[55-70, 0] $-3.06=-3.06$
(Instruction 3)
Return of a share of stock $=\$ 50-60=-10$
Return of a call option $=\operatorname{Max}[50-55,0]-9.29=-9.29$
Return of a put option $=\operatorname{Max}[55-50,0]-3.06=\underline{+1.94}$
(Instruction 4)
The total value of portfolio
if stock pice increases to $\$ 70: 0.6 \times \$ 70-1 \times \operatorname{Max}[70-55,0]=\$ 27$
if stock pice decreases to $\$ 50: 0.6 \times \$ 50-1 \times \operatorname{Max}[50-55,0]=\$ 30$
(Instruction 5)
The total value of portfolio
if stock pice increases to $\$ 70: 0.75 \times \$ 70-1 \times \operatorname{Max}[70-55,0]=\$ 37.5$
if stock pice decreases to $\$ 50: 0.75 \times \$ 50-1 \times \operatorname{Max}[50-55,0]=\$ 37.5$

[Problem 2]

Loss $=5,000,000$ Canadian dollars $\times(0.75-0.70)=\$ 250,000$

[Problem 3]

(Instruction 1) Increase
(Instruction 2) $\$ 9,000 \times 245 \div 111=\underline{\$ 19,865}$

[Problem 4]

(Instruction 1)

	1	2	3	4
up	Benefit			Benefit
down		Benefit	Benefit	

(Instruction 2)
(1) $(8-3) \times 500 \times 10=+25,000$
(2) $(0-3) \times 500 \times 10=-15,000$
(Instruction 3)
(1) $-(7-2.50) \times 100 \times 30=-13,500$
(2) $-(0-2.50) \times 100 \times 30=\underline{+7,500}$
(Instruction 4)
(1) $(5-1.75) \times 100 \times 60=\underline{+19.500}$
(2) $(0-1.75) \times 100 \times 60=\underline{-10.500}$
(Instruction 5)
(1) $-(5-2.75) \times 400 \times 20=\underline{-18,000}$
(2) $-(0-2.75) \times 400 \times 20=\underline{+22,000}$

[Problem 5]

oil price $=\$ 20 \mathrm{~m}=50,000 \times 0-(50,000 \times 5)=-250,000$
oil price $=\$ 22 \mathrm{~m}=50,000 \times 0-(50,000 \times 3)=-150,000$
oil price $=\$ 25$ m $50,000 \times 0-(50,000 \times 0)=\underline{0}$
oil price $=\$ 28 \mathrm{~m}=50,000 \times 3-(50,000 \times 0)=+150,000$
oil price $=\$ 30 \mathrm{~m}+50,000 \times 5-(50,000 \times 0)=\underline{+250,000}$

Chapter 8. WCM

[Problem 1]

	AR	Sales	Profits
1	-	-	0
2	-	0	-
3	0	+	0
4	-	0	+

[Problem 2]
$\mathrm{CCC}=365 \times \frac{3}{15}+365 \times \frac{2}{15 \times 0.8}-365 \times \frac{1}{15 \times 0.8}=103.42$ days
$\mathrm{CCC}=365 \times \frac{3 \times 0.9}{15}+365 \times \frac{2 \times 0.9}{15 \times 0.8}-365 \times \frac{1 \times 1.1}{15 \times 0.8}=86.99$ days
Incremental profit $=15,000,000 \times 8 \% \times(103.42-86.88) \div 365$ days $=\underline{+54,016}$

[Problem 3]

```
(Instruction 1) \(\mathrm{CCC}=75+38-30=\underline{83}\) days
(Instruction 2) \(\mathrm{AR}=3,421,875 \times 38 / 365=356,250\)
(Instruction 3) Turn times per year \(=365 / 75=\underline{4.87}\)
```


[Problem 4]

(Instruction 1) $\mathrm{DSO}=10 \times 0.4+40 \times 0.6=\underline{28}$ days
(Instruction 2) $\mathrm{AR}=912,500 \times 28 / 365=\underline{70,000}$
(Instruction 3) $0 \%, \quad 3 / 97 \times 365 / 30=\underline{37.6 \%}$
(Instruction 4) Decrease AR

[Problem 5]

$$
\begin{array}{ll}
\text { (Instruction 1) } & \mathrm{CCC}=22+40-30=32 \text { days } \\
\text { (Instruction 2) } & \mathrm{WCF}=1500 \times 32 \times \$ 6=\$ 288,000 \\
\text { (Instruction 3) } & 1500 \times 5 \times \$ 6=\$ 45,000 \\
\text { (Instruction 4) } & \mathrm{CCC}=20+40-30=30 \text { days } \\
& \mathrm{WCF}=1800 \times 30 \times \$ 7=\$ 378,000
\end{array}
$$

[Problem 6]

(Instruction 1)
(1) Assets $=(2,000,000 \times 0.45)+1,000,000=1,900,000$

Equity $=1,900,000 \times 0.4=760,000$
Debt $=1,900,000 \times 0.6=1,140,000$
EBIT $=2,000,000 \times 0.12=240,000$
$\mathrm{NI}=(240,000-1,140,000 \times 0.08) \times 0.6=89,280$
ROE $=89,280 / 760,000=\underline{12 \%}$
(2) Assets $=(2,000,000 \times 0.50)+1,000,000=2,000,000$

Equity $=2,000,000 \times 0.4=800,000$
Debt $=2,000,000 \times 0.6=1,200,000$
$\mathrm{NI}=(240,000-1,200,000 \times 0.08) \times 0.6=86,400$
ROE $=86,400 / 800,000=11 \%$
(3) Assets $=(2,000,000 \times 0.60)+1,000,000=2,200,000$

Equity $=2,200,000 \times 0.4=880,000$
Debt $=2,200,000 \times 0.6=1,320,000$
$\mathrm{NI}=(240,000-1,320,000 \times 0.08) \times 0.6=80,640$
ROE $=80,640 / 880,000=9 \%$
(Instruction 2) not valid
(Instruction 3) liquidity vs. profitability

[Problem 7]

(Instruction 1) $1,400,000 \times 3=\$ 4,200,000$
(Instruction 2) $1,400,000 \times 3 \times 10 \%=\$ 420,000$
(Instruction 3) 420,000/12 $=\underline{\$ 35,000}$

[Problem 8]

(Instruction 1) $\$ 24,000$
(Instruction 2) 20,000/30 $\times 4+4,000 / 30 \times 6=\$ 3,467$
(Instruction 3) $24,000 / 30=\underline{\$ 800}$
$(4$ days $\times 20,000 / 24,000)+(6$ days $\times 4,000 / 24,000)=\underline{4.333 \text { days }}$

Chapter 9. M\&A

[Problem 1]

(Instruction 1)
$\mathrm{R}=5+6 \mathrm{x} 0.9=10.4$
$\mathrm{P}=\$ 2 /(0.104-0.05)=\$ 37.04$
(Instruction 2)
$\mathrm{R}=5+6 \mathrm{x} 1.1=11.6$
$\mathrm{P}=\$ 2 /(0.116-0.07)=\underline{\$ 43.48}$
(Instruction 3)
\$37.04 ~ \$43.48

[Problem 2]

(Instruction 1)
Total MV $=140+102+2.6 / 0.12=264 \mathrm{M}$
Stock $=264 \times 0.4=\underline{\$ 106 M}$
Cash $=\underline{\$ 110 \mathrm{M}}$
(Instruction 2)
Stock : NPV $=264-106-140=\$ 18 \mathrm{M}$
Cash : NPV = 264-110-140 = \$14M
(Instruction 3)
Stock

